Graph Algorithms: Dijkstra & Prim in Practice (42 chars)

Generated from prompt:

根据作业内容生成一个完整PPT(可编辑PPTX格式),内容包括两个图论问题的讲解: 第一部分:校园导航最短路径(Dijkstra算法) 1. 实际问题:校园内宿舍、教学楼、图书馆、食堂等地点之间的最短路径问题 2. 图论建模:无向加权图建模,顶点代表地点,边权为步行时间 3. 算法选择与分析:使用Dijkstra算法(优先队列实现) 4. 代码实现:展示主要代码逻辑 5. 结果展示:输出宿舍到各点最短路径及路径图 第二部分:新区光纤/电缆布线成本最小化(Prim算法) 1. 实际问题:不同地点间铺设光纤线路,使得总成本最小 2. 图论建模:将地点抽象为顶点,边权为建设成本,形成无向连通加权图 3. 算法选择与分析:Prim算法用于求最小生成树 4. 代码实现:核心算法展示 5. 结果展示:展示最小生成树边及总成本 风格:科技蓝+学术风,结构清晰,适合课堂展示。

Explores graph theory applications via 15-slide PPT: Dijkstra for campus shortest paths (modeling locations as weighted graph, priority queue impl., code/results) and Prim for min-cost fiber cabling (

December 13, 202515 slides
Slide 1 of 15

Slide 1 - 图论算法在实际问题中的应用

This title slide is titled "Applications of Graph Theory Algorithms in Real-World Problems." The subtitle highlights two examples: Dijkstra for shortest paths in campus navigation and Prim for minimum-cost fiber optic wiring in new areas.

图论算法在实际问题中的应用

Dijkstra:校园导航最短路径 | Prim:新区光纤布线最小成本

Source: 课堂讲解PPT

Speaker Notes
介绍图论算法(Dijkstra和Prim)在校园导航与光纤布线中的应用,结构清晰,科技蓝学术风。
Slide 1 - 图论算法在实际问题中的应用
Slide 2 of 15

Slide 2 - 演示大纲

This agenda slide outlines the presentation structure. It covers campus navigation shortest paths using Dijkstra's algorithm, minimum-cost wiring in a new area using Prim's algorithm (each with problem description, graph modeling, analysis, code, and results), followed by a summary of algorithm applications.

演示大纲

  1. 1. 校园导航最短路径(Dijkstra)
  2. 问题描述、图建模、算法分析、代码实现、结果展示

  3. 2. 新区布线最小成本(Prim)
  4. 问题描述、图建模、算法分析、代码实现、结果展示

  5. 3. 总结

算法应用回顾与展望 Source: 图论作业PPT

Slide 2 - 演示大纲
Slide 3 of 15

Slide 3 - 第一部分:校园导航最短路径

This slide is the header for Section 01: Campus Navigation Shortest Path. It highlights using the Dijkstra algorithm to compute shortest walking paths from dormitories to teaching buildings, libraries, cafeterias, and similar campus spots.

第一部分:校园导航最短路径

01

校园导航最短路径

Dijkstra算法求解宿舍到教学楼图书馆食堂等最短步行路径

Source: Dijkstra算法讲解

Speaker Notes
介绍校园导航实际问题、图论建模、Dijkstra算法选择、代码实现及结果展示。
Slide 3 - 第一部分:校园导航最短路径
Slide 4 of 15

Slide 4 - 实际问题

The slide outlines key campus locations like dorms, teaching buildings, libraries, and cafeterias. It addresses the core problem of shortest walking path planning between them, targeting minimal travel time from dorms to optimize students' daily commutes.

实际问题

  • 校园内关键地点:宿舍、教学楼、图书馆、食堂等
  • 问题核心:各点间最短步行路径规划
  • 目标明确:宿舍到各点最小步行时间
  • 实际需求:学生日常出行时间优化

Source: 校园内宿舍、教学楼、图书馆、食堂等地点间最短路径问题。目标:从宿舍到各点的最短步行时间路径。

Speaker Notes
介绍校园导航的实际问题,强调从宿舍出发的最短步行路径需求。
Slide 4 - 实际问题
Slide 5 of 15

Slide 5 - 图论建模

The slide illustrates graph theory modeling with an undirected weighted graph, where vertices represent locations like dormitory (D), teaching building (T), library (L), and cafeteria (C). Edge weights denote walking times, such as D-T: 5 minutes and D-L: 10 minutes.

图论建模

!Image

  • 无向加权图:顶点=地点(D宿舍、T教学楼、L图书馆、C食堂)
  • 边权=步行时间
  • 示例:D-T:5min, D-L:10min

Source: Wikipedia

Slide 5 - 图论建模
Slide 6 of 15

Slide 6 - 算法选择与分析

The slide covers Dijkstra's algorithm for single-source shortest paths in non-negative weight graphs. It details priority queue implementation with O((V+E)logV) complexity, greedy selection of the nearest unvisited vertex, and path optimization through relaxation.

算法选择与分析

  • Dijkstra算法:单源最短路径,适用于非负权图。
  • 优先队列实现:时间复杂度 O((V+E)logV)。
  • 贪心策略:每次选最小距离未访顶点。
  • 核心思想:通过松弛操作逐步优化路径。

Source: 校园导航最短路径(Dijkstra算法)

Slide 6 - 算法选择与分析
Slide 7 of 15

Slide 7 - 代码实现(核心逻辑)

This slide outlines the core pseudocode logic of Dijkstra's algorithm in a table with steps, code snippets, and explanations. It covers initialization of the source distance and priority queue, followed by iteratively popping the minimum-distance node, relaxing its neighbors, and updating the queue until empty.

代码实现(核心逻辑)

{ "headers": [ "步骤", "伪代码", "说明" ], "rows": [ [ "1", "dist[源]=0; pq.push(源)", "初始化源点距离和优先队列" ], [ "2", "while pq:", "循环直到队列为空" ], [ "3", "u = pq.pop_min()", "取出最小距离节点u" ], [ "4", "for v in adj[u]:", "遍历u的邻接节点v" ], [ "5", "if dist[v] > dist[u] + w(u,v): dist[v] = dist[u] + w(u,v); pq.update(v)", "松弛并更新优先队列" ] ] }

Source: Dijkstra算法优先队列实现

Speaker Notes
展示Dijkstra算法核心伪代码逻辑,强调初始化、循环松弛和优先队列更新。
Slide 7 - 代码实现(核心逻辑)
Slide 8 of 15

Slide 8 - 结果展示

The slide titled "结果展示" presents a table of shortest paths from starting point D to endpoints T, L, and C, with travel times in minutes. It lists: D→T (5 min), D→T→L (8 min), and D→T→L→C (12 min).

结果展示

{ "headers": [ "起点", "终点", "最短时间 (min)", "路径" ], "rows": [ [ "D", "T", "5", "D → T" ], [ "D", "L", "8", "D → T → L" ], [ "D", "C", "12", "D → T → L → C" ] ] }

Slide 8 - 结果展示
Slide 9 of 15

Slide 9 - 第二部分:新区光纤布线成本最小化

This slide is a section header for Part 2: Minimizing Fiber Optic Cabling Costs in New Areas. It describes using Prim's algorithm to find the minimum spanning tree, achieving the lowest total fiber connection costs.

第二部分:新区光纤布线成本最小化

02

第二部分:新区光纤布线成本最小化

Prim算法求最小生成树,实现光纤连接总成本最小化

Speaker Notes
Prim算法讲解:新区光纤布线成本最小化问题建模、算法分析与实现
Slide 9 - 第二部分:新区光纤布线成本最小化
Slide 10 of 15

Slide 10 - 实际问题

The slide outlines a real-world problem of laying fiber optic cables at different locations within a new district. It aims to ensure full connectivity among all points while minimizing total construction costs.

实际问题

  • 新区内不同地点铺设光纤线路
  • 确保所有点完全连通
  • 最小化总建设成本
Slide 10 - 实际问题
Slide 11 of 15

Slide 11 - 图论建模

The workflow defines vertices as locations, sets edge weights based on cable/fiber construction costs, and builds an undirected connected weighted graph. The objective is to find the Minimum Spanning Tree (MST) connecting all vertices at minimal total cost.

图论建模

{ "headers": [ "步骤", "描述", "关键输出" ], "rows": [ [ "顶点定义", "将新区不同地点抽象为图的顶点", "V = {地点1, 地点2, ..., 地点n}" ], [ "边权重设定", "根据地点间铺设光纤/电缆的建设成本定义边及权重", "E = {(u,v): 成本}, w(u,v) = 建设成本" ], [ "图构建", "形成无向连通加权图,确保所有顶点可达", "G = (V, E, w) 无向连通加权图" ], [ "问题抽象", "目标:求最小生成树,连通所有顶点最小总成本", "MST:最小总权连通子图" ] ] }

Source: 无向连通加权图:顶点=地点,边权=建设成本。目标:最小生成树(MST),连通所有顶点最小总权。

Speaker Notes
展示新区光纤布线问题的图论建模流程,强调从实际问题到MST的抽象过程。
Slide 11 - 图论建模
Slide 12 of 15

Slide 12 - 算法选择与分析

The slide selects Prim's algorithm for building a Minimum Spanning Tree (MST) via greedily adding the smallest edge from any vertex. It optimizes implementation with a priority queue for O((V+E)logV) complexity, ideal for dense graphs (E ≈ V²).

算法选择与分析

  • 算法选择:Prim算法构建最小生成树(MST)
  • 核心思想:从任意顶点贪心添加最小边
  • 实现优化:优先队列,O((V+E)logV)复杂度
  • 适用场景:稠密图(E≈V²,高连接密度)

Source: Prim算法:MST构建,从任意点开始贪心添加最小边。优先队列实现:O((V+E)logV)。适用于稠密图。

Slide 12 - 算法选择与分析
Slide 13 of 15

Slide 13 - 代码实现(核心逻辑)

This slide outlines the core logic of Prim's Minimum Spanning Tree algorithm in a table with steps, pseudocode, and explanations. It details initialization of keys and the MST set, a loop to add V-1 vertices by extracting the minimum-key vertex, and relaxing updates for its neighbors if a better edge weight is found.

代码实现(核心逻辑)

{ "headers": [ "步骤", "伪代码", "说明" ], "rows": [ [ "1. 初始化", "key[v]=∞, key[s]=0, inMST[s]=true;", "设置初始键值,s入MST" ], [ "2. 主循环", "for in 1..V-1:", "添加V-1个顶点到MST" ], [ "3. 选最小", "u = extractmin(key);", "提取key最小的未入MST顶点" ], [ "4. 遍历邻居", "for v in adj[u]:", "检查u所有邻接顶点" ], [ "5. 松弛更新", "if !inMST[v] && w(u,v)<key[v]:", "若更优则更新key[v]和parent[v]" ] ] }

Source: Prim算法伪代码

Speaker Notes
Prim算法核心逻辑伪代码,突出初始化、主循环、松弛操作。
Slide 13 - 代码实现(核心逻辑)
Slide 14 of 15

Slide 14 - 结果展示

The "结果展示" slide presents key stats for a new area's fiber optic wiring minimum spanning tree, with a total cost of 45k Yuan. It includes 3 tree edges, a lowest edge cost of 10k (A-B), and a highest of 20k (C-D).

结果展示

  • 45k: 总成本
  • 新区光纤布线总成本(元)

  • 3: 生成树边数
  • 最小生成树包含边数量

  • 10k: 最低边成本
  • 最小成本连接边(A-B)

  • 20k: 最高边成本

最大成本连接边(C-D) Source: Prim算法 - 最小生成树结果

Speaker Notes
展示最小生成树边(A-B:10k, B-C:15k, C-D:20k 等)、总成本45k元及树状图可视化。强调成本最小化效果。
Slide 14 - 结果展示
Slide 15 of 15

Slide 15 - 总结与展望

The slide summarizes Dijkstra and Prim algorithms as graph theory tools for solving real-world optimization problems, stressing correct modeling and efficient implementation, while encouraging exploration of more graph algorithm applications. It thanks the audience for listening and invites questions and discussion.

总结与展望

Dijkstra & Prim:图论算法解决实际优化问题。

关键:正确建模 + 高效实现。

扩展:探索更多图算法应用!

Q&A

感谢聆听!欢迎提问与讨论。

Source: 图论算法实际应用

Speaker Notes
回顾Dijkstra与Prim关键点,强调建模与实现,展望更多应用,开启Q&A。
Slide 15 - 总结与展望

Discover More Presentations

Explore thousands of AI-generated presentations for inspiration

Browse Presentations
Powered by AI

Create Your Own Presentation

Generate professional presentations in seconds with Karaf's AI. Customize this presentation or start from scratch.

Create New Presentation

Powered by Karaf.ai — AI-Powered Presentation Generator