Zero-Shot Anomaly Detection via VLM Adaptation (42 chars)

Generated from prompt:

基于视觉-语言模型适配的零样本工业异常检测方法——硕士开题答辩PPT。结构如下: 1. 封面:题目、姓名、导师、学院、日期。 2. 研究背景及现状:介绍工业缺陷检测挑战、零样本学习重要性、视觉-语言模型在异常检测中的应用进展(引用WinCLIP、AdaCLIP、AnomalyCLIP、CLIP-AD等代表性文献)。 3. 研究目标与主要内容:说明研究目标、两条主线——图像引导的文本提示生成、文本感知的区域融合与图像级判别。 4. 研究方法与技术路线:展示从CLIP模型适配、跨模态注意力、区域加权到最终图像级判别的流程图。 5. 关键技术与创新点:说明图像上下文反哺文本提示、区域融合的多层加权聚合、端到端闭环检测框架的创新性。 6. 已开展工作与可行性分析:包括可行性分析(理论与技术)与已完成的调研、数据预处理、实验环境搭建。 7. 进度安排与预期成果:列出研究阶段时间表(2026-2027)、预期成果(算法、专利、论文、系统原型)。 8. 主要参考文献:列出[1] Jeong J, Zou Y, Kim T, et al. WinCLIP (CVPR 2023),[2] Cao Y, Zhang J, Frittoli L, et al. AdaCLIP (ECCV 2024),[3] Zhou Q, Pang G, Tian Y, et al. AnomalyCLIP (arXiv 2023),[4] Chen X, Zhang J, Tian G, et al. CLIP-AD (IJCAI 2024),[5] Wang C, Zhu W, Gao BB, et al. Real-IAD (CVPR 2024)。 9. 致谢页:感谢导师和评审老师。

Master's proposal on adapting vision-language models (e.g., CLIP) for zero-shot industrial anomaly detection. Covers challenges, goals, innovations in image-guided prompts & region fusion, progress, t

December 12, 20259 slides
Slide 1 of 9

Slide 1 - 封面

This title slide, labeled "Cover," presents the topic "Zero-Shot Industrial Anomaly Detection Method Based on Vision-Language Model Adaptation." It includes the presenter's name (XXX), supervisor (XXX), college (XXX College), and date (October 2024).

基于视觉-语言模型适配的零样本工业异常检测方法

姓名:XXX 指导教师:XXX 学院:XXX学院 日期:2024年10月

Speaker Notes
展示题目:基于视觉-语言模型适配的零样本工业异常检测方法;姓名、导师、学院、日期。居中大标题设计。
Slide 1 - 封面
Slide 2 of 9

Slide 2 - 研究背景及现状

The slide outlines challenges in industrial defect detection, including poor real-time performance and high annotation costs, with zero-shot learning as a key solution to data scarcity. It reviews VLM advancements like WinCLIP (CVPR 2023) and AdaCLIP (ECCV 2024), plus recent works such as AnomalyCLIP (arXiv 2023) and CLIP-AD (IJCAI 2024).

研究背景及现状

  • 工业缺陷检测挑战:实时性差、高标注成本
  • 零样本学习关键:解决数据标注稀缺
  • VLMs进展:WinCLIP (CVPR 2023)
  • VLMs方法:AdaCLIP (ECCV 2024)
  • 最新工作:AnomalyCLIP (arXiv 2023), CLIP-AD (IJCAI 2024)

Source: 工业缺陷检测挑战:实时性、高成本标注;零样本学习重要性;VLMs应用进展:引用WinCLIP(CVPR2023)、AdaCLIP(ECCV2024)、AnomalyCLIP(arXiv2023)、CLIP-AD(IJCAI2024)。(112字)

Slide 2 - 研究背景及现状
Slide 3 of 9

Slide 3 - 研究目标与主要内容

This slide outlines the research objective of proposing a zero-shot industrial anomaly detection method. It highlights two main lines: image-guided text prompt generation and text-aware region fusion with image-level discrimination.

研究目标与主要内容

  • 研究目标:提出零样本工业异常检测方法
  • 主线1:图像引导文本提示生成
  • 主线2:文本感知区域融合与图像级判别

Source: 目标:提出零样本工业异常检测方法。主线1:图像引导文本提示生成;主线2:文本感知区域融合与图像级判别。(78字)

Speaker Notes
研究目标:提出零样本工业异常检测方法。主要内容两条主线:图像引导文本提示生成;文本感知区域融合与图像级判别。
Slide 3 - 研究目标与主要内容
Slide 4 of 9

Slide 4 - 研究方法与技术路线

This workflow details a technical route for industrial anomaly detection, beginning with CLIP model fine-tuning to create task-specific embeddings. It then applies cross-modal attention for key region extraction, multi-layer region weighting for anomaly clue fusion, and an end-to-end scorer for final image-level discrimination.

研究方法与技术路线

{ "headers": [ "步骤", "核心技术", "功能" ], "rows": [ [ "CLIP模型适配", "视觉-语言模型微调", "适配工业异常检测域,生成任务特定嵌入" ], [ "跨模态注意力", "文本感知视觉注意力机制", "提取图像中与异常文本提示相关的关键区域" ], [ "区域加权", "多层区域权重聚合融合", "加权整合局部异常线索,提升检测精度" ], [ "图像级判别", "端到端异常评分器", "输出最终图像级异常判别结果" ] ] }

Source: 基于视觉-语言模型适配的零样本工业异常检测方法

Speaker Notes
流程图:CLIP模型适配 → 跨模态注意力 → 区域加权 → 图像级判别。展示完整技术路线。(62字)
Slide 4 - 研究方法与技术路线
Slide 5 of 9

Slide 5 - 关键技术与创新点

This slide, titled "Key Technologies and Innovations," presents five core features in a vision-language anomaly detection system. They include image context feedback for zero-shot prompt accuracy, multi-layer weighted aggregation for anomaly localization, end-to-end closed-loop detection, cross-modal attention for CLIP adaptation, and text-perceptive fusion for image-level zero-shot discrimination.

关键技术与创新点

{ "features": [ { "icon": "🔄", "heading": "图像上下文反哺", "description": "图像上下文动态反哺文本提示,提升零样本提示生成精度。" }, { "icon": "🔗", "heading": "多层加权聚合", "description": "区域融合多层加权聚合机制,实现精细特征整合与异常定位。" }, { "icon": "⚙️", "heading": "端到端闭环", "description": "端到端闭环检测框架,确保高效鲁棒的异常判别流程。" }, { "icon": "💡", "heading": "跨模态注意力", "description": "跨模态注意力强化视觉-语言交互,创新适配CLIP模型。" }, { "icon": "🎯", "heading": "文本感知融合", "description": "文本感知驱动区域融合,支持图像级零样本判别。" } ] }

Speaker Notes
1.图像上下文反哺文本提示;2.区域融合多层加权聚合;3.端到端闭环检测框架。突出创新性。(68字)
Slide 5 - 关键技术与创新点
Slide 6 of 9

Slide 6 - 已开展工作与可行性分析

The left column analyzes feasibility, noting mature research on zero-shot learning and vision-language models like CLIP (e.g., WinCLIP, AnomalyCLIP) for anomaly detection, with public pre-trained models and easy adaptation. The right column outlines completed work: literature survey, dataset preprocessing with industrial anomaly image annotation, and experimental setup using CLIP and PyTorch.

已开展工作与可行性分析

可行性分析已开展工作
理论基础:零样本学习与视觉-语言模型(如CLIP)在异常检测中已有WinCLIP、AnomalyCLIP等成熟研究。技术成熟:预训练模型公开,适配方法易实现。(38字)完成文献调研,掌握领域进展;数据集预处理,包括工业异常图像标注;实验环境搭建,配置CLIP模型与PyTorch框架。(34字)
Slide 6 - 已开展工作与可行性分析
Slide 7 of 9

Slide 7 - 进度安排与预期成果

The slide outlines a project timeline from January 2026 to December 2027, spanning four phases: literature survey and preparation, model development and training with CLIP adaptation, experimental validation and optimization for zero-shot industrial anomaly detection, and final paper writing with patents and prototypes. Expected outcomes include completed research, algorithm implementation, and system prototypes by the end.

进度安排与预期成果

2026.01-06: 文献调研与准备 完成视觉-语言模型调研,数据预处理与实验环境搭建。 2026.07-12: 模型开发与训练 适配CLIP模型,开发图像引导文本提示与区域融合模块。 2027.01-06: 实验验证与优化 开展零样本工业异常检测实验,性能优化与分析。 2027.07-12: 论文撰写与成果产出 完成论文投稿、专利申请、算法实现与系统原型构建。

Slide 7 - 进度安排与预期成果
Slide 8 of 9

Slide 8 - 主要参考文献

The slide titled "主要参考文献" features a table listing five main references by number. They include [1] WinCLIP (CVPR2023), [2] AdaCLIP (ECCV2024), [3] AnomalyCLIP (arXiv2023), [4] CLIP-AD (IJCAI2024), and [5] Real-IAD (CVPR2024).

主要参考文献

{ "headers": [ "编号", "参考文献" ], "rows": [ [ "[1]", "WinCLIP (CVPR2023)" ], [ "[2]", "AdaCLIP (ECCV2024)" ], [ "[3]", "AnomalyCLIP (arXiv2023)" ], [ "[4]", "CLIP-AD (IJCAI2024)" ], [ "[5]", "Real-IAD (CVPR2024)" ] ] }

Slide 8 - 主要参考文献
Slide 9 of 9

Slide 9 - 致谢

The slide, titled "致谢" (Acknowledgements), thanks the mentor for guidance and the reviewers for their valuable opinions, accompanied by a 🙏 emoji. The subtitle expresses "Thank you for listening!"

致谢

感谢导师指导和评审老师宝贵意见!🙏

谢谢聆听!

Source: 基于视觉-语言模型适配的零样本工业异常检测方法——硕士开题答辩PPT

Speaker Notes
结束语:谢谢大家!行动号召:欢迎老师们提问与指导。
Slide 9 - 致谢

Discover More Presentations

Explore thousands of AI-generated presentations for inspiration

Browse Presentations
Powered by AI

Create Your Own Presentation

Generate professional presentations in seconds with Karaf's AI. Customize this presentation or start from scratch.

Create New Presentation

Powered by Karaf.ai — AI-Powered Presentation Generator