RL Empowering Unmanned Ships (28 chars)

Generated from prompt:

制作一份中文演示文稿,主题为《强化学习在无人船上的应用》。风格为简洁海洋蓝。适用于课堂汇报,无需演讲提示。共20页,内容结构如下: 1. 封面页:标题、作者、学校、日期 2. 无人船简介与应用场景 3. 无人船自主控制的意义 4. 强化学习引入的必要性 5. 强化学习基本原理(Agent、环境、奖励) 6. Q-Learning与DQN算法简介 7. 连续控制中的PPO算法 8. RL与传统控制方法对比 9. 无人船动力学模型 10. 控制目标定义(路径规划、避障、节能) 11. 状态与动作空间设计 12. 奖励函数设计 13. 仿真环境搭建(Gazebo/MATLAB/ROS) 14. 训练过程与结果 15. 收敛曲线与性能分析 16. 与传统方法对比实验 17. 实际案例:港口自动巡航 18. 当前挑战(样本效率、安全性) 19. 未来展望(多智能体、迁移学习) 20. 总结与致谢

Explores reinforcement learning (RL) for USVs: basics (Q-Learning, DQN, PPO), dynamics modeling, state/action/reward design, Gazebo sim training (95% success), vs. traditional methods, port case, chal

December 14, 202520 slides
Slide 1 of 20

Slide 1 - 强化学习在无人船上的应用

This title slide is titled "强化学习在无人船上的应用" (Application of Reinforcement Learning on Unmanned Ships). The subtitle lists the author XXX from XXX University, dated October 2023, for a class presentation.

强化学习在无人船上的应用

作者:XXX | 学校:XXX大学 | 日期:2023年10月 | 课堂汇报

Source: 作者:XXX | 学校:XXX大学 | 日期:2023年10月 | 课堂汇报

Slide 1 - 强化学习在无人船上的应用
Slide 2 of 20

Slide 2 - 无人船简介与应用场景

Unmanned Surface Vehicles (USVs) are ships that navigate autonomously without human intervention. The slide outlines their applications in ocean monitoring, search and rescue, military patrol, and port logistics, plus core advantages of efficiency, safety, and 24-hour continuous operation.

无人船简介与应用场景

  • 无人船(USV):无人工干预自主航行船只
  • 应用场景:海洋监测、搜救、军事巡逻、港口物流
  • 核心优势:高效、安全、24小时连续作业
Slide 2 - 无人船简介与应用场景
Slide 3 of 20

Slide 3 - 无人船自主控制的意义

The slide "无人船自主控制的意义" outlines the key benefits of autonomous control for unmanned ships, including improved navigation safety by avoiding human errors and adaptation to complex environments like bad weather. It also highlights cost reduction, higher task efficiency, and advancement of marine intelligent technologies.

无人船自主控制的意义

  • 提升航行安全性,避免人为错误
  • 实现复杂环境适应,如恶劣天气
  • 降低成本,提高任务效率
  • 推动海洋智能技术发展
Slide 3 - 无人船自主控制的意义
Slide 4 of 20

Slide 4 - 强化学习引入的必要性

Traditional methods struggle to handle dynamic, uncertain environments, necessitating reinforcement learning (RL), which adaptively learns optimal strategies through trial and error. RL excels in high-dimensional continuous state spaces while boosting robustness and generalization.

强化学习引入的必要性

  • 传统方法难应对动态不确定环境
  • RL通过试错自适应学习最优策略
  • 有效处理高维连续状态空间
  • 显著提升鲁棒性和泛化能力
Slide 4 - 强化学习引入的必要性
Slide 5 of 20

Slide 5 - 强化学习基本原理

This slide introduces reinforcement learning basics, defining the agent (e.g., unmanned ship controller) and environment (ocean scenarios with dynamics models). It covers core elements—state (s), action (a), reward (r)—and the goal of maximizing cumulative rewards (∑ rt).

强化学习基本原理

  • • Agent:决策主体(如无人船控制器)
  • • 环境:海洋场景与动力学模型
  • • 核心元素:状态 s、动作 a、奖励 r
  • • 目标:最大化累积奖励 ∑ rt
Slide 5 - 强化学习基本原理
Slide 6 of 20

Slide 6 - Q-Learning与DQN算法简介

The slide introduces Q-Learning, a tabular method for discrete action spaces that updates a Q-table via the formula Q(s,a) ← Q(s,a) + α[r + γ max{a'} Q(s',a') - Q(s,a)], but struggles with high-dimensional states. It contrasts this with DQN, which uses deep neural networks to approximate the Q-function for complex environments, enhanced by experience replay and target networks for better stability and performance.

Q-Learning与DQN算法简介

Q-Learning(表格型,离散动作)DQN(深度Q网络,神经网逼近)

| 适用于离散动作空间,使用Q表存储状态-动作值函数。 更新公式: Q(s,a) ← Q(s,a) + α[r + γ max{a'} Q(s',a') - Q(s,a)] 简单直观,但高维状态空间下存储困难。 | 使用深度神经网络逼近Q函数,处理连续或高维状态。 关键改进:经验回放(稳定训练)、目标网络(减少相关性)。 显著提升复杂环境下的稳定性和性能。 |

Slide 6 - Q-Learning与DQN算法简介
Slide 7 of 20

Slide 7 - 连续控制中的PPO算法

The slide introduces PPO (Proximal Policy Optimization) as a policy gradient method under the Actor-Critic framework. It highlights PPO's clipped objective function for stable training and its suitability for continuous thrust/rudder control in unmanned ships.

连续控制中的PPO算法

  • PPO:Proximal Policy Optimization(近端策略优化)
  • Actor-Critic框架下的策略梯度方法
  • 裁剪目标函数,确保训练稳定可靠
  • 适用于无人船连续推力/舵角控制

Source: 强化学习在无人船上的应用

Slide 7 - 连续控制中的PPO算法
Slide 8 of 20

Slide 8 - RL与传统控制方法对比

This slide compares RL with traditional control methods PID and MPC via a table listing advantages and disadvantages. PID is simple and fast but needs a precise model; MPC optimizes globally but is computationally intensive; RL is adaptive and model-free but training is time-consuming.

RL与传统控制方法对比

{ "headers": [ "方法", "优点", "缺点" ], "rows": [ [ "PID", "简单快速", "需精确模型" ], [ "MPC", "优化全局", "计算密集" ], [ "RL", "自适应无模型", "训练耗时" ] ] }

Slide 8 - RL与传统控制方法对比
Slide 9 of 20

Slide 9 - 无人船动力学模型

The slide, titled "Unmanned Ship Dynamics Model," outlines the MMG model for hull, propeller, and rudder systems. It includes equations for longitudinal force (X = m(ú - vr)), stern rudder moment (N = Iż), and the Nomoto simplified model for heading dynamics.

无人船动力学模型

!Image

  • MMG模型:船体、推进器、舵系统
  • 纵向力:X = m(ú - v r)
  • 艉舵力矩:N = I ż
  • Nomoto简化模型:航向动力学

Source: Image from Wikipedia article "Unmanned surface vehicle"

Slide 9 - 无人船动力学模型
Slide 10 of 20

Slide 10 - 控制目标定义

The slide "控制目标定义" defines three key control objectives. They include path planning to track preset routes, real-time obstacle avoidance, and energy saving via speed optimization to minimize consumption.

控制目标定义

  • 路径规划:跟踪预设航线
  • 避障:实时检测避开障碍
  • 节能:最小化能耗优化速度
Slide 10 - 控制目标定义
Slide 11 of 20

Slide 11 - 状态与动作空间设计

The slide defines the state space as position (x,y), heading ψ, speeds u,v, and obstacle relative distances, with a continuous action space of thrust F and rudder angle δ. It emphasizes normalization for unified scales to boost training efficiency, ensuring comprehensive state observations and controllable actions.

状态与动作空间设计

  • 状态空间:位置(x,y)、航向ψ、速度u,v、障碍相对距离
  • 动作空间:推力F、舵角δ(连续空间)
  • 归一化处理:统一量纲,提升训练效率
  • 设计确保状态观测全面、动作连续可控
Slide 11 - 状态与动作空间设计
Slide 12 of 20

Slide 12 - 奖励函数设计

The slide presents a four-stage workflow for designing a reward function in unmanned boat control. It covers defining components (trajectory error, collision penalties, speed rewards, energy costs), formulating a weighted linear equation with thresholds, tuning weights experimentally, and validating via simulations for convergence, obstacle avoidance, and energy optimization.

奖励函数设计

{ "headers": [ "阶段", "任务描述", "关键细节" ], "rows": [ [ "1. 定义奖励组件", "识别无人船控制的关键因素", "轨迹误差、碰撞惩罚、速度奖励、能耗惩罚" ], [ "2. 设计奖励公式", "构建加权线性组合及分段机制", "r = w1(-轨迹误差) + w2(-碰撞) + w3(速度) + w4(-能耗);航行+100,碰撞-1000" ], [ "3. 参数调优", "调整权重系数w1~w4", "通过初步实验平衡各组件影响" ], [ "4. 验证迭代", "仿真测试奖励函数效果", "确保训练收敛、避障优先、节能优化" ] ] }

Source: r = w1 (-轨迹误差) + w2 (-碰撞惩罚) + w3 (速度奖励) + w4 (-能耗)。分段设计:航行+100,碰撞-1000。

Slide 12 - 奖励函数设计
Slide 13 of 20

Slide 13 - 仿真环境搭建

This slide on simulation environment setup features Gazebo + ROS for physical and sensor simulation, plus MATLAB/Simulink for rapid prototyping. It also integrates Stable-Baselines3 for reinforcement learning algorithms and Gym for standardized environment interfaces.

仿真环境搭建

  • Gazebo + ROS:物理仿真与传感器模拟
  • MATLAB/Simulink:快速原型验证
  • 集成Stable-Baselines3:强化学习算法支持
  • 集成Gym:标准化环境接口
Slide 13 - 仿真环境搭建
Slide 14 of 20

Slide 14 - 训练过程与结果

The slide, titled "Training Process and Results," depicts the cycle of environment interaction → experience collection → strategy update. It highlights key outcomes: success rate >95% and path error <1m.

训练过程与结果

!Image

  • 环境交互 → 经验收集 → 策略更新
  • 成功率 > 95%
  • 路径误差 < 1m

Source: Image from Wikipedia article "Reinforcement learning"

Slide 14 - 训练过程与结果
Slide 15 of 20

Slide 15 - 收敛曲线与性能分析

The slide highlights a 98% obstacle avoidance success rate and a path tracking MSE of just 0.5. It also shows fast convergence of cumulative rewards to a stable value alongside a significant, smooth decline in the loss function during training.

收敛曲线与性能分析

  • 98%: 避障成功率
  • 障碍规避成功率高达98%

  • 0.5: 路径跟踪MSE
  • 路径跟踪均方误差仅0.5

  • 快速: 累积奖励收敛
  • 快速收敛至稳定值

  • 显著: 损失函数下降
  • 训练中损失平稳下降

Slide 15 - 收敛曲线与性能分析
Slide 16 of 20

Slide 16 - 与传统方法对比实验

This slide compares PID, APF, and RL methods for path planning against traditional approaches, evaluating path error (m), obstacle avoidance rate, and time (s). RL excels with the lowest error (0.8m) and highest avoidance rate (98%), despite longer computation time (150s) compared to PID (2.1m, 85%, 120s) and APF (1.5m, 90%, 110s).

与传统方法对比实验

{ "headers": [ "方法", "路径误差(m)", "避障率", "时间(s)" ], "rows": [ [ "PID", "2.1", "85%", "120" ], [ "APF", "1.5", "90%", "110" ], [ "RL", "0.8", "98%", "150" ] ] }

Slide 16 - 与传统方法对比实验
Slide 17 of 20

Slide 17 - 实际案例:港口自动巡航

This slide showcases a real-world case of an unmanned boat autonomously cruising in a port scene. It highlights real-time avoidance of surrounding vessels and precise berthing operations.

实际案例:港口自动巡航

!Image

  • 港口场景无人船自主巡航
  • 实时避让周边船只
  • 精准靠泊操作演示

Source: Image from Wikipedia article "Unmanned surface vehicle"

Slide 17 - 实际案例:港口自动巡航
Slide 18 of 20

Slide 18 - 当前挑战

The slide "当前挑战" (Current Challenges) outlines major limitations in the system. These include low sample efficiency requiring vast training data, insufficient safety with high exploration risks, poor real-time performance from inference delays, and weak generalization across scenarios.

当前挑战

  • 样本效率低:训练数据需求大
  • 安全性不足:探索阶段风险高
  • 实时性差:推理延迟明显
  • 泛化能力弱:跨场景适应差
Slide 18 - 当前挑战
Slide 19 of 20

Slide 19 - 未来展望

The slide "未来展望" (Future Outlook) outlines key future research directions. It covers multi-agent RL for formation collaboration, sim2real transfer learning, integration of large models for advanced perception, and standardized framework development.

未来展望

  • 多智能体RL:编队协作
  • 迁移学习:sim2real
  • 结合大模型:高级感知
  • 标准化框架开发
Slide 19 - 未来展望
Slide 20 of 20

Slide 20 - 总结与致谢

The conclusion slide states that reinforcement learning significantly enhances unmanned ships' autonomous capabilities. It thanks the audience for listening, invites Q&A, and provides a contact email (xxx@email.com).

总结与致谢

强化学习显著提升无人船自主能力。

感谢聆听!Q&A。联系:xxx@email.com

Slide 20 - 总结与致谢

Discover More Presentations

Explore thousands of AI-generated presentations for inspiration

Browse Presentations
Powered by AI

Create Your Own Presentation

Generate professional presentations in seconds with Karaf's AI. Customize this presentation or start from scratch.

Create New Presentation

Powered by Karaf.ai — AI-Powered Presentation Generator