The slide outlines a four-phase workflow for the proposed technical solution in legal case processing: case information extraction to build structured inputs, token optimization encoding to improve vector quality, contrastive learning training to enhance model discrimination, and generative retrieval output to boost accuracy. Each phase specifies core activities and targeted goals for efficient, precise case retrieval.
拟采取的技术方案
{ "headers": [ "阶段", "核心内容", "目标" ], "rows": [ [ "案例信息抽取", "从法律案例中提取关键信息,如事实、法律条款等", "构建高质量结构化输入" ], [ "码字优化编码", "设计优化码字方案,提升编码效率和语义表示", "改善向量表示质量" ], [ "对比学习训练", "采用对比学习方法训练模型,拉近正样本距离", "增强模型区分能力" ], [ "生成式检索输出", "基于生成式检索直接输出相关案例ID", "提升检索精准度" ] ] }
Source: 根据《法律案例检索的方法研究与实现》开题报告内容
Speaker Notes
流程:案例信息抽取 → 码字优化编码 → 对比学习训练 → 生成式检索输出。提升检索精准度。